$$L(y|\pi) = y_1\log (\frac{1}{2}+\frac{1}{4}\pi)+(y_2+y_3)\log(\frac{1}{4}(1-\pi)) + y_4\log \frac{1}{4}\pi$$
$$\begin{array}{|c|} \hline L(y|\pi) = y_1\log (\frac{1}{2}+\frac{1}{4}\pi)+(y_2+y_3)\log(\frac{1}{4}(1-\pi)) + y_4\log \frac{1}{4}\pi\\ \hline \end{array}$$
$$\begin{aligned} &\frac{y_1}{2+\pi} - \frac{y_2+y_3}{1-\pi} + \frac{y_4}{\pi}\quad\overset{set}{=}\quad0\\\\ \implies &197\pi^2-15\pi-68=0\\\\ \implies &\pi_1=-0.5507\qquad \pi_2=0.62682 \end{aligned}$$
$P({\bf y}|\pi) = \frac{(y_{11} + y_{12}+ y_2+ y_3+ y_4)!}{y_{11}! y_{12}! y_2! y_3! y_4!} (\frac{1}{2})^{y_{11} } \left(\frac{1}{4}\pi\right)^{y_{12} } \left(\frac{1}{4}(1-\pi)\right)^{y_2} \left(\frac{1}{4}(1-\pi)\right)^{y_3} \left(\frac{1}{4}\pi\right)^{y_4}$ $$L(y|\pi) = (y_{12}+y_4)\log (\frac{1}{4}\pi)+(y_2+y_3)\log(\frac{1}{4}(1-\pi))$$
$$\begin{aligned} \color{blue}{E-Step}:\\ &y_{11}^{(t)}=125\frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{4}\pi^{(t)}} \quad y_{12}^{(t)}=125\frac{\frac{1}{4}\pi^{(t)}}{\frac{1}{2} + \frac{1}{4}\pi^{(t)}}\\\\ \color{blue}{M-Step}:\\ & \pi^{(t+1)} = \frac{y_{12}^{(t)}+34}{y_{12}^{(t)}+34+18+20} \end{aligned}$$
$$ \begin{array}{ccc} \hline t & \pi^{(t)} & \pi^{(t)}-\pi^{*} & (\pi^{(t+1)}-\pi^{*})\div(\pi^{(t)}-\pi^{*}) \\ \hline 0&0.500000&-0.126820&0.146448\\ 1&0.608247&-0.018573&0.134551\\ 2&0.624321&-0.002499&0.132504\\ 3&0.626489&-0.000331&0.128888\\ 4&0.626777&-0.000043&0.102346\\ 5&0.626816&-0.000004&-0.164615\\ 6&0.626821&0.000001&1.939386\\ 7&0.626821&0.000001&1.064314\\ 8&0.626821&0.000001&1.008024\\ 9&0.626821&0.000001&1.001057\\ 10&0.626821&0.000001&1.000140\\ \hline \end{array} $$
$$\begin{align} L(\theta) &= \log \prod_{i=1}^{m} p(x; \theta)\\ &=\sum_{i=1}^m \log p(x;\theta) \end{align}$$
$$\begin{align} L(\theta) &=\sum_{i=1}^m \log p(x;\theta)\\ &= \sum_{i=1}^m \log \sum_z p(x, z; \theta) \end{align}$$
$$\begin{aligned} \max_\theta\sum_i \log p(x^{(i)};\theta) =&\sum_i \log \sum_{z^{(i)} } p(x^{(i)}, z^{(i)};\theta)\\ \color{white}{=}&\color{white}{\sum_i\log\sum_{z^{(i)}}{Q_i(z^{(i)})}\lbrack \frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})}\rbrack }\\ \color{white}{=}&\color{white}{\sum_i\log\mathbb{E}_{z^{i}\sim Q_i}\lbrack \frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})}\rbrack}\\ \end{aligned}$$
$$\begin{aligned} \max_\theta\sum_i \log p(x^{(i)};\theta) =&\sum_i \log \sum_{z^{(i)} } p(x^{(i)}, z^{(i)};\theta)\\ =&\sum_i\log\sum_{z^{(i)}}\color{blue}{Q_i(z^{(i)})}\color{red}{\lbrack \frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})}\rbrack}\\ =&\sum_i\log\mathbb{E}_{z^{i}\sim Q_i}\lbrack \frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})}\rbrack\\ \end{aligned}$$
$$\begin{aligned} \max_\theta\sum_i \log p(x^{(i)};\theta) =&\sum_i \log \sum_{z^{(i)} } p(x^{(i)}, z^{(i)};\theta)\\ =&\sum_i\log\sum_{z^{(i)}}\color{blue}{Q_i(z^{(i)})}\color{red}{\lbrack \frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})}\rbrack}\\ \hline =&\sum_i\log\mathbb{E}_{z^{(i)}\sim Q_i}\lbrack \frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})}\rbrack\\ \geq&\sum_i\mathbb{E}_{z^{(i)}\sim Qi}\lbrack\log\frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})}\rbrack\\ =&\sum_i\sum_{z^{(i)}}Q_i(z^{(i)})\log\frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})} \end{aligned}$$
$$\begin{array}{|c|} \hline \max_\theta\sum_i \log p(x^{(i)};\theta) \geq&\sum_i\sum_{z^{(i)}}\color{blue}{Q_i(z^{(i)})}\color{red}{\log\frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})} }\\ \hline \end{array}$$
$$\begin{aligned} \frac{p(x^{i},z^{(i)};\theta)}{Q_i(z^{(i)})} = c \implies c \cdot \sum_{z^{(i)}}Q_i(z^{(i)}) = \sum_{z^{(i)}} p(x^{(i)}, z^{(i)}; \theta) \end{aligned}$$
$$\begin{aligned} \quad\;\;\implies c = \sum_{z^{(i)} } p(x^{(i)}, z^{(i)}; \theta) \end{aligned}$$
$$\begin{aligned} Q_i(z^{(i)}) &= \frac{p(x^{(i)}, z^{(i)}; \theta)}{\sum_z p(x^{(i)}, z; \theta)}\\ &= \frac{p(x^{(i)}, z^{(i)}; \theta)}{p(x^{(i)}; \theta)}\\ &= p(z^{(i)}| x^{(i)}; \theta) \end{aligned}$$
$$\begin{array}{|c|} \hline Q_i(z^{(i)})= p(z^{(i)}| x^{(i)}; \theta) \\ \hline \end{array}$$
$$\theta := \arg\max_\theta \sum_i\sum_{z^{(i)} } Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$
$$f(x;\mu,\Sigma)=\frac{1}{{(2\pi)}^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}}e^{-\frac{1}{2}{(x-\mu)^T}{\Sigma^{-1}}{(x-\mu)}}$$
$$\begin{aligned}Q_i(z^{(i)})&=p(z^{(i)}| x^{(i)}; \theta)\\ &\color{white}{= \frac{p(x^{(i)}|z^{(i)}=j; \mu, \Sigma)p(z^{(i)}=j|\phi)}{\sum_{l=1}^k p(x^{(i)}|z^{(i)}=l; \mu, \Sigma)p(z^{(i)}=l|\phi)} } \end{aligned}$$
$$\begin{aligned} Q_i(z^{(i)})&=p(z^{(i)}=j|x^{(i)}; \phi, \mu, \Sigma)\\\\ &= \frac{p(x^{(i)}|z^{(i)}=j; \mu, \Sigma)p(z^{(i)}=j|\phi)}{\sum_{l=1}^k p(x^{(i)}|z^{(i)}=l; \mu, \Sigma)p(z^{(i)}=l|\phi)}\\\\ &=w_j^{(i)} \end{aligned}$$
$$ \begin{aligned} \phi_j &:= \frac{1}{m}\sum_{i=1}^m w_j^{(i)}\\\\ \mu_j &:= \frac{\sum_{i=1}^m w_j^{(i)} x^{(i)}}{\sum_{i=1}^j w_j^{(i)}}\\\\ \Sigma_j &:= \frac{\sum_{i=1}^m w_j^{(i)}(x^{(i)}-\mu_j)(x^{(i)}-\mu_j)^T}{\sum_{i=1}^j w_j^{(i)}} \end{aligned} $$