Processing math: 100%
+ - 0:00:00
Notes for current slide
Notes for next slide




How to Use iPhone with 32G Storage?




center powered by remark.js

1 / 38

BLACK TECHNOLOGY DIMENSIONALITY REDUCTION!

2 / 38

Singular Value Decomposition

ChengMingbo

2017-09-14

3 / 38

SVD ABC

  • Matrix Linear Transformation
  • EigenVector & EigenVaule
  • Singular Value Decomposition
  • Other Applications
  • Summary
4 / 38

Linear Transformation

5 / 38

Essense of Linear Transformation

x=[13]A=[2111]y=Ax

6 / 38

[2 0;0 2] 相当于把一个坐标翻了两倍

Essense of Linear Transformation

x=[13]

7 / 38

Essense of Linear Transformation

A=[2111]

8 / 38

Essense of Linear Transformation

y=[52]

9 / 38

Essense of Linear Transformation

x=[13]A=[2111]y=Ax
Ax=[2111][13]=[52]

10 / 38

EigenVector & EigenVaule

11 / 38

EigenVector & EigenVaule

Multiplication 100 times


[3102][3102][3102][3102]=

12 / 38

EigenVector & EigenVaule

A=[3102]
[3102][12]=?

13 / 38

EigenVector & EigenVaule



A=[3102] [3102][1(2)1(2)]=2[1(2)1(2)][3102][10]=3[10] x1=[1(2)1(2)]x2=[10] λ1=2λ2=3

14 / 38

EigenVector & EigenVaule

A=[3102]

15 / 38

EigenVector & EigenVaule

AQ=[3102][1(2)11(2)0]=[1(2)11(2)0][2003]
AQ=QΛ A=QΛQ1

16 / 38

EigenVector & EigenVaule


Ax1=λx1Ax2=λx2Axk=λxk


Q=[x11x21xk1x12x22xk2x1mx22xkm]Λ=[λ1000λ200λk]

17 / 38

EigenVector & EigenVaule

A=QΛQ1

18 / 38

EigenVector & EigenVaule

Multiplication 100 times


[3102][3102][3102][3102]= AAAA=QΛQ1QΛQ1QΛQ1QΛQ1 AAAA=QΛΛΛQ1=Q[2100003100]Q1

19 / 38

Singular Value Decomposition(SVD)

20 / 38

Singular Value Decomposition(SVD)


21 / 38

Singular Value Decomposition(SVD)

x=[13]A=[2111]y=Ax

22 / 38

What if we change coordinate from red to blue?

Singular Value Decomposition(SVD)

23 / 38

Singular Value Decomposition(SVD)

24 / 38

Singular Value Decomposition(SVD)

v1v2v3,...vnu1,u2,u3,...un  σ1,σ2,σ3,...σn

25 / 38

Singular Value Decomposition(SVD)


Av1=σ1u1 Avj=σjuj [A][v1,v2,,vn]=[u1,u2,,un][σ1000σ2000σn]

26 / 38

Singular Value Decomposition(SVD)


[A][v1,v2,,vn]=[u1,u2,,un][σ1000σ2000σn]

Cm×nCn×nCm×nCn×n


Am×nVn×n=ˆUm×nˆΣn×n

27 / 38

V^{-1}=V^T V^{-1}=V^T

Singular Value Decomposition(SVD)

Am×n=ˆUm×nˆΣn×nVTn×n

28 / 38

Singular Value Decomposition(SVD)

29 / 38

Singular Value Decomposition(SVD)

Am×n=Um×mΣm×nVTn×n

30 / 38

How to resolve these three variables?

31 / 38

(AAT)U=UΣ2
(ATA)VT=VTΣ2

32 / 38

Compression

33 / 38

Compression



34 / 38

Other Applications

  • Recommendation
  • noise filtering
  • Compression
35 / 38

netflix

Summary

  • Matrix Linear Transformation
  • EigenVector & EigenVaule
  • Singular Value Decomposition
  • Other Applications
36 / 38

Reference

  • https://www.youtube.com/watch?v=EokL7E6o1AE
  • https://www.youtube.com/watch?v=cOUTpqlX-Xs
  • https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
  • https://itunes.apple.com/cn/itunes-u/linear-algebra/id354869137
  • http://www.ams.org/samplings/feature-column/fcarc-svd
  • https://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html
37 / 38

Thanks!

Q&A

38 / 38

BLACK TECHNOLOGY DIMENSIONALITY REDUCTION!

2 / 38
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow