$$\vec{x}=\begin{bmatrix}1\\3\end{bmatrix}\qquad A=\begin{bmatrix}2 & 1 \\ -1 & 1 \end{bmatrix}\qquad\vec{y}=A\vec{x}$$
$$\vec{x}=\begin{bmatrix}1 \\3\end{bmatrix}$$
$$A=\begin{bmatrix}2 & 1 \\ -1 & 1 \end{bmatrix}$$
$$\vec{y}= \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$
$$\vec{x}=\begin{bmatrix}1\\3\end{bmatrix}\qquad A=\begin{bmatrix}2 & 1 \\ -1 & 1 \end{bmatrix}\qquad\vec{y}=A\vec{x}$$ $$A\vec{x}= \begin{bmatrix}2 & 1\\ -1 & 1\end{bmatrix}\begin{bmatrix}1\\3\end{bmatrix}=\begin{bmatrix}5 \\2\end{bmatrix}$$
$$\begin{bmatrix}3& 1 \\0 & 2\end{bmatrix}\begin{bmatrix}3& 1 \\0 & 2\end{bmatrix}\begin{bmatrix}3& 1 \\0 & 2\end{bmatrix}\cdots \begin{bmatrix}3& 1 \\0 & 2\end{bmatrix}=$$
$$A=\begin{bmatrix}3 & 1 \\0& 2\end{bmatrix}$$ $$\begin{bmatrix}3 & 1 \\ 0& 2\end{bmatrix}\begin{bmatrix}1 \\2\end{bmatrix}=?$$
$$A=\begin{bmatrix}3 & 1 \\0& 2\end{bmatrix}$$ $$\begin{bmatrix}3 & 1 \\0& 2\end{bmatrix} \begin{bmatrix}\frac{-1}{\sqrt(2)} \\ \frac{1}{\sqrt(2)}\end{bmatrix}= 2\begin{bmatrix}\frac{-1}{\sqrt(2)} \\ \frac{1}{\sqrt(2)}\end{bmatrix}\qquad\quad\begin{bmatrix}3 & 1 \\0& 2\end{bmatrix} \begin{bmatrix}1 \\ 0\end{bmatrix}= 3\begin{bmatrix}1 \\ 0\end{bmatrix} $$ $$\vec{x_1}=\begin{bmatrix}\frac{-1}{\sqrt(2)} \\ \frac{1}{\sqrt(2)}\end{bmatrix}\qquad\, \vec{x_2}=\begin{bmatrix}1 \\ 0\end{bmatrix}$$ $$\lambda_1=2\qquad\qquad\qquad\lambda_2=3$$
$$A=\begin{bmatrix}3 & 1 \\0& 2\end{bmatrix}$$
$$AQ=\begin{bmatrix}3 & 1 \\0& 2\end{bmatrix} \begin{bmatrix} \frac{-1}{\sqrt(2)}&1\\ \frac{1}{\sqrt(2)}&0 \end{bmatrix}= \begin{bmatrix} \frac{-1}{\sqrt(2)}&1 \\ \frac{1}{\sqrt(2)}&0 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 0 & 3 \end{bmatrix} $$ $$AQ=Q\Lambda$$ $$A = Q\Lambda Q^{-1}$$
$$A\vec{x_1}=\lambda\vec{x_1}\\ A\vec{x_2}=\lambda\vec{x_2}\\ \,\qquad\vdots\\ A\vec{x_k}=\lambda\vec{x_k}$$
$$Q= \begin{bmatrix} x_{11}& x_{21} &\cdots x_{k1}&\\ x_{12}& x_{22} &\cdots x_{k2}&\\ &\vdots&&\\ x_{1m}& x_{22} &\cdots x_{km}& \end{bmatrix} \qquad\Lambda= \begin{bmatrix} \lambda_1 & 0 & \cdots&0\\ 0 &\lambda_2&\cdots&0\\ \vdots&\vdots&\ddots\\ 0&\cdots&\cdots&\lambda_k \end{bmatrix}$$
$$\begin{bmatrix}3& 1 \\0 & 2\end{bmatrix}\begin{bmatrix}3& 1 \\0 & 2\end{bmatrix}\begin{bmatrix}3& 1 \\0 & 2\end{bmatrix}\cdots \begin{bmatrix}3& 1 \\0 & 2\end{bmatrix}=$$ $$AAA\cdots A = Q\Lambda Q^{-1}Q\Lambda Q^{-1}Q\Lambda Q^{-1}\cdots Q\Lambda Q^{-1}$$ $$AAA\cdots A =Q\Lambda\Lambda\cdots \Lambda Q^{-1}= Q\begin{bmatrix}2^{100} & 0 \\\\0 & 3^{100}\end{bmatrix}Q^{-1} $$
$$\vec{v_1} \vec{v_2} \vec{v_3},...\vec{v_n} \qquad\rightarrow \qquad \vec{u_1},\vec{u_2},\vec{u_3},...\vec{u_n}$$ $$\qquad\qquad\qquad\qquad\qquad\ \,\sigma_1,\sigma_2, \sigma_3,...\sigma_n$$
$$ A \vec{v_1}=\sigma_1 \vec{u_1}$$ $$\vdots$$ $$ A \vec{v_j}=\sigma_j \vec{u_j}$$ $$\begin{bmatrix} \\A\\\\\end{bmatrix} \begin{bmatrix}\\ \vec{v_1},\vec{v_2},\cdots,\vec{v_n}\\\\\end{bmatrix} =\begin{bmatrix}\\ \vec{u_1}, \vec{u_2},\cdots,\vec{u_n}\\\\ \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n \end{bmatrix}$$
$$\begin{bmatrix}\\A\\\\\end{bmatrix} \begin{bmatrix}\\ \vec{v_1},\vec{v_2},\cdots,\vec{v_n}\\\\\end{bmatrix} =\begin{bmatrix}\\ \vec{u_1}, \vec{u_2},\cdots,\vec{u_n}\\\\ \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n \end{bmatrix}$$ $$\Uparrow$$
$$A_{m\times n}V_{n\times n} = \hat{U}_{m\times n}\hat{\Sigma}_{n\times n}$$
$$A_{m\times n} = \hat{U}_{m\times n}\hat{\Sigma}_{n\times n}V^T_{n\times n}$$
$$A_{m\times n} = U_{m\times m}\Sigma_{m\times n}V^T_{n\times n}$$
$$(AA^T)U=U\Sigma^2 $$ $$(A^TA)V^T=V^T\Sigma^2$$